
J .  Fluid Mech. (1980), wol. 101, part 2, pp .  307-319 

Printed in &eat Britain 
307 

Shock detachment from cones in a relaxing gas 

By H. G. H0RNUNG-f  AND A. F. P. HOUWING 
Department of Physics, Australian National University, Canberra, Australia 

(Received 8 November 1979) 

Measurements of the shock stand-off distance on cones of various base diameters in 
carbon dioxide and nitrogen flows with dissociative relaxation show that the detach- 
ment process occurs more gradually with relaxation than in a perfect gas, as the cone 
semi-angle is increased. This is in agreement with a prediction which is made on the 
basis of the behaviour of the sonic surface in the flow field. The phenomenon is similar 
to that observed previously with wedge flow but shows interesting effects peculiar to 
the cone flow. The cone experiments also eliminate the end effect and permit easy 
variation of the relaxation rate parameter without changing the gas. Perfect-gas 
argon experiments provide a convenient check. 

1. Introduction 
This paper is concerned with the inviscid, high-Mach-number flow of zt relaxing gas 

over cones a t  zero incidence with semi-angles in the range around the value at  which the 
shock wave detaches from the cone tip. The shock is taken to be partly dispersed, the 
situation of particular interest being that in which a translational-rotational subshock 
of unresolvably small thickness is followed by a region of ,vibrational and dissociative 
relaxation, the extent of which is characterized by a single relaxation length, 1. 

Whether an observer sees such a flow to be in thermodynamic equilibrium or not 
depends on the relative magnitudes of his smallest resolvable length scale A ,  his largest 
viewable length A, and the relaxation length 1. If he cannot resolve 1, or if 

E < h € A ,  

A < l < A ,  
an equilibrium exists, while, if 

the relaxation is resolvable and must therefore be taken into account. At the other 
extreme, when 

a ‘frozen’ situation exists. The gas may be considered to be in a constrained state of 
equilibrium, which differs from the unconstrained equilibrium state indicated by (1). 
Hence the equation of state is different for case (3) than for case (1). Since the conditions 
after a plane oblique shock are determined from the free-stream conditions by the 
conservation and state equations, they will be different for ( 1 )  and (3), and, in case (2) 
the conditions after the translational shock are as for (3) while they asymptotically 
approach those specified by (1) further from the shock. 

The conditions achievable from a free-stream state, A ,  by a plane, oblique shock may 
be conveniently presented in the speed-deflexion (V-8) plane, see figure 1. The two 

t Present address: DFVLR-AVA, 34 Gottingen, Bunsenstr. 10, W. Germany. 

h < A < Z ,  (3) 
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FIGURE 1. Shock loci in the speed-deflexion plane for equilibrium (1) and frozen (3) flow. 
---- , sonic line relative to frozen speed of sound. 

curves represent the loci of conditions after the shock as observed in cases (1) and (3) 
respectively as the shock strength is increased from zero a t  point A .  The maximum 
deflexion points M ( 3 )  and M ( 1 )  represent the largest angles of a wedge a t  which an 
attached shock can be observed in the respective situations. For high free-stream Mach 
number, the point X(3) at which the flow is sonic (flow speed = frozen speed of sound) 
at the sub-shock practically coincides with M (  3). 

By considering the flow over a wedge of angle 8, such that 

&il.1(3) < 8, < 4si lA1)7 (4) 
Hornung & Smith (1979) showed that, in this range, the shock stand-off distance, 
A, is O(Z), and that A increases more gradually with relaxation than for a perfect gas. 
They related this behaviour to the phenomenon that, as 9 is increased beyond a certain 
value, a subsonic layer starts to grow from the subshock into the relaxation layer while 
the flow further downstream is still supersonic. Their experiments with dissociating 
nitrogen and carbon dioxide flows substantiated these predictions and were given 
additional weight by being contrasted with a perfect-gas argon experiment. 

One of the weaknesses of wedge flow experiments is that the transverse length of the 
wedge is finite. The end effects influence results in a similar way as relaxation does, and 
a null-experiment with a perfect gas becomes essential. One of the motivations for 
repeating the experiments with cones was that the end effect is automatically removed 
in axisymmetric flow. The relative ease of making cones also allows the important 
parameter l / d  to be varied without changing the gas by making cones of different base 
diameter, d. 

2. Relaxing cone flow 
2.1. Weak and strong relaxation 

The flow over cones is more complex than wedge flow, as the condition at the body, 
characterized for example by the cone semi-angle a,, is not the same as that at  the 
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v 
FIGURE 2. Shock and body loci for frozen (3) and equilibrium (1) cone flow 

in the case of weak relaxation, S s ~ ( l )  < S c ~ ( 3 ) .  

shock, S,, even in equilibrium or frozen flow. The conditions at the body map into a 
body locus in the V-6 plane, the shock detachment condition being given by 

6, = 6 C X )  ( 5 )  

where S,,, is the extreme value of 8,. Again, the body locus for the frozen situation (3) 
is different from that for the equilibrium situation (1) )  as is the case for the shock locus. 
One may now distinguish between two cases according to the relative magnitude of the 
extreme deflexion angles a t  the shock and cone in the frozen and equilibrium situations. 
We denote by 'strong ' and 'weak' relaxation the cases when iYSnl( 1)  is greater or less 
than 6,,(3) respectively. The V-6 map of the case of weak relaxation is shown in 
figure 2. 

This is the case relevant to the present discussion and, indeed, strong relaxation may 
be expected to be quite rare in a laboratory environment. This can be demonstrated by 
the following simple estimate. Numerical solutions of the equations of perfect gas cone 
flow give S,,, as a function of y, the ratio of specific heats. The values of S,,, and the 
corresponding maximum deflexion at the shock are shown in figure 3 for infinite free- 
stream Mach number. Taking the case of a free stream of diatomic molecules, y = 1.4, 
and figure 3 gives 8,,,(3) 2: 57". The curve for a,,, has this value a t  y = 1.18. For 
6,,,(3) = aSAq,(1), the internal degrees of freedom of the equilibrium flow would have 
to use up enough energy to make the effective ratio of specific heats equal to 1.18, 
corresponding to  a hypersonic density ratio across the shock of 12.1. While this is 
possible in free flight, it is unusual in wind-tunnel experiments, because freezing of the 
internal degrees of freedom in the nozzle flow invariably causes the free stream to 
remain partially dissociated. I n  the free-piston shock tunnel a density ratio of 12 in 
nitrogen has only been achieved across a normal shock. I n  the following, we shall 
therefore restrict discussion to the case of weak relaxation. 
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FIGURE 3. Calculated maximum deflexion angles at the shock and a t  the cone in 
perfect-gas flow at infinite free-stream Mach number. 

2.2. The V-S map of conejow with an attached shock 

When the cone angle is sufficiently small, the shock is attached to the cone tip and the 
flow is everywhere supersonic. Within a distance 4 3 )  of the cone tip, such that 
A(3) < 1, the frozen conditions apply. Consider first the streamline that passes through 
the shock very close to the tip. It suffers an initial discontinuous deflexion to Ss(3) at 
the shock, followed by a further deflexion asymptotically approaching the cone semi- 
angle s,. During this second continuous deflexion the velocity decreases along the 
streamline according to a relation S( V )  which can be determined from numerical 
solutions of frozen cone flow. Since A(3) < I, no appreciable relaxation takes place 
along this streamline until it  has reached the cone semi-angle 6, on the body locus 
8,(3). The subsequent relaxation along this streamline occurs at  constant deffexion 
and is accompanied by an increase in velocity, so that the conditions on it finally 
approach a point close to 8, = 8,(1) in the V-6 plane. This streamline is shown in 
figure 4(b) in the physical plane as BC, and its corresponding V-8 map is BB'C in 
figure 4 (a). Note that the point B in the physical plane maps into the line BB' in the 
V-6 plane. 

The streamline that passes through the shock a t  a distance from the tip much larger 
than the relaxation length, I ,  must approach the point 8, = 8,(1) eventually. It is 
shown as DEF in figure 4 ( b ) .  The distance measured along this streamline to the point 
where the flow deflexion approaches the body deflexion 6, is large compared with I .  The 
deflexion of the streamline due to relaxation is therefore completed before any 
significant turning due to the cone flow occurs. The V-8 map of this equilibrium 
streamline is also shown in figure 4(a) .  Clearly, the curves BB' and EF represent the 
frozen and equilibrium cone flow solutions respectively for a cone of semiangle 8,. 
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FIUURE 4. Relaxing flow over a cone with attached shock and supersonic conditions 
throughout. (a )  V-13 plane; (b )  physical plane. 

The V-S map now shows that the translational subshock must be curved between B 
and D. Since the body loci 6,(3), SC( 1)  as well as the equilibrium shock locus &(l) only 
apply for straight shocks, they can only be used for the frozen and equilibrium 
extremes in the cone flow. However, the qualitative behaviour of the V-6 map of a 
streamline through a curved shock has been determined by Hornung (1977) for the 
plane case, and the results may be easily extended to axisymmetric flows. Applied to 
the present problem they yield the qualitative shape of the V-S map of the general 
streamline GH shown in figure 4. Note, that the intersections of this streamline with 
the lines 8,( 1) and 8,(3) have lost their significance because the shock radius of curva- 
ture at G is neither very large nor very small compared with 2. The separation of the 
asymptotic points C and F in the V-8 plane also arises from the fact that the shock 
angles at B and D are not the same so that, though the asymptotic pressures a t  C and 
F are the same, the streamline near the body has a higher entropy and therefore a lower 
velocity . 

2.3. The sonic line 

Since we have only considered the supersonic problem so far, the size of the cone was 
not important. As the cone semiangle 8, is increased, however, the flow becomes locally 
subsonic. The existence of subsonic regions provides the mechanism by which the 
detachment process derives its length scale either from the relaxation length or from 
the size of the cone. The latter may conveniently be specified by the base diameter, d. 

Consider first the case of perfect-gas (frozen) flow. The equations of cone flow admit 
conical solutions in which both subsonic and supersonic regions occur, the conical 
sonic surface separating a subsonic region near the body from a supersonic one near the 
shock. If the cone is finite, this provides a path by which the trailing edge of the cone 
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FIGURE 5. Mixed (supersonic and subsonic) cone flow of a perfect gas. 

flow 
-1 LA 

over a cone. 

can influence the flow near the tip. However, i t  appears that, at least for a small range 
of angles, this is not enough to cause the shock to be influenced (see Solomon 1955). 
The sonic line has to meet the trailing edge where the flow is accelerated by the corner. 
The mixed case for perfect gas flow over a finite cone with its V-6 map is shown 
schematically in figure 5 .  

The cone angle for maximum deflexion is somewhat larger than that for a sonic 
shock. Thus when the cone semiangle has reached 6,,,(3) conditions behind the 
shock are already subsonic. The trailing edge of the cone, and therefore the length 
scale a, can influence the shock, so that the shock is curved. For cone angles larger 
than 6,,,( 3) the shock detaches. The detachment distance, A, increases approximately 
linearly with 6c-6c,,f(3) (see Ward & Pugh 1968). The detached flow and its V-6 
map are shown in figure 6. Clearly, the body locus in the V-6 plane no longer has any 
significance in this case because the shock is curved. Similarly, the shape of the sonic 
line in the V-6 plane depends on the shock shape in the physical plane, though its 
end point on the shock is fixed. 
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FIGURE 7. Relaxing cone flow. Attached shock, subsonic region 
embedded in relaxation region. 

Now introduce relaxation and, for simplicity, take the case d $ 1 first. Consider the 
attached shock of figure 4 and let 6, be increased, so that the ‘ quadrilateral ’ enclosing 
the flow field in the V-6 plane slides up and to the left, its corners being constrained to 
lie on 6,( 1))  6,(3) and $(3). As 8, is increased, there comes a point a t  which B’ crosses 
the sonic line. However, the Mach number on the streamlines entering the subsonic 
region is increased again by the relaxation, so that the complete flow picture is as shown 
in figure 7. 

As 6, is increased to a point where 6, > Sc,1(3)7 the frozen shock detaches, but the 
detachment distance remains so small that it cannot be resolved by an observer for 
whom the inequalities (1) apply. This is consistent with the form of the corresponding 
V-&map of the flow, see figure 8. It shows that the extent of the subsonic region from 
which the detachment distance derives its scale is less than the relaxation length 1. 

Further increase of S, causes the extent of the subsonic region to increase further, 
until i t  exceeds the relaxation length. This occurs when 8, N Sc,ll(l). Thereafter the 
point where the sonic line meets the body lies a t  the trailing edge of the cone, and the 
flow picture is qualitatively very similar to that of figure 6 .  The length scale governing 
A is then the cone size d. The shock stand-off distance A may be expected to increase 
more slowly with S, when 6,(3) < 8, < 8cL+1(l) than when 8, > aCM(1),  since the 
length scale governing A in I is the former range while it is d in the latter. 

Now let d 2 1. Consider the case 6,,(3) < S, < ScAr( 1) .  The subsonic region may now 
be terminated by the expansion around the trailing edge and not by the relaxation. 
The governing length scale for the detachment distance is then d ,  so that one may 
expect only a slight departure from the frozen flow behaviour. If d < I, figure 6 applies, 
and A is always governed by d .  The expected behaviour of A l d  with S, can now be 
sketched for different values of l / d ,  see figure 9. This diagram incorporates the linear 
behaviour of A l d  with 6, observed by Ward & Pugh (1968) in the frozen case and 
assumes that it also occurs a t  equilibrium. Ward & Pugh’s measurements resolve 6, 
more finely in the immediate vicinity of detachment than the otherwise more extensive 
measurements of Emunds (1976). 
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FIGURE 8. Relaxing cone flow. Detached shock, stand-off distance controlled by relaxation 
length. 8 c ~ ( 3 )  < Sc < Sc ,~ ( l ) .  SGbsonic region has reached shock. 
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FIGURE 9. Expected behaviour of shock stand-off distance for cones 
of different sizes relative to the relaxation length. 

3. Experiment 
3.1. Facility and free-stream conditions 

The large free-piston shock tunnel was used for all the experiments in the same con- 
figuration as in the wedge flow experiments of Hornung & Smith (1979). Mach- 
Zehnder interferograms were taken of dissociating nitrogen and carbon dioxide flows, 
and of perfect-gas argon flows. The free-stream conditions of the contoured nozzle 
flow, calculated numerically from measured reservoir conditions, are given in table 1. 
The free-stream density in the carbon ,dioxide and nitrogen flows was increased by a 
factor of 1.7 over those of the wedge flow experiments in order to reduce the viscous 
length scale. This has the consequence that the gas composition is slightly changed in 
favour of the molecular constituents. 
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Nitrogen Carbon dioxide Argon 

Velocity (km s-l) 5.2 4.0 2.2 

Density (g cm-s) 4.3 x 10-6 7.8 x 10-6 2.2 x 1 0 - 6  
Temperature (K) 1040 1900 57 

Mach number 7.8 5.9 16 

Composition (mole g-l) N, 3.37 x lo-' co, 9.1 x 10-5 Ar 0.025 
N 4.0 x CO 1 . 3 4 ~  low2 

0 1.ox 10-8 
0 ~ 6 . 2  x 10-3 

TABLE 1. Free-stream conditions. 

3.2. Range of parameters 

For each of the experimental conditions in table 1, a relation of the form implied by 
figure 9, 

A/d = f  &!) ( 6 )  

exists for inviscid flow. I n  the experiment, however, the Reynolds number is finite and 
is likely to  affect the experiment in the case of the smallest cones (d = 1 em), so that 
the boundary-layer thickness has to be estimated. The case of most interest in the 
present context is that of incipient detachment of the shock when the Mach number 
outside the boundary layer, but behind the attached shock, is approximately 1, and 
conditions outside the boundary layer are uniform. For the small cones, the flow may 
be assumed to be frozen throughout for the purposes of estimating the boundary-layer 
displacement thickness, 6". For the case of an insulated wall (giving an overestimate 
of S*) the results of van Driest (1952) may be used to obtain 

for a flat plate a t  zero incidence, a t  sonic conditions outside the boundary layer, for a 
Prandtl number of 0.75 and a specific heat ratio of 1.4. Though the last two conditions 
are not exactly satisfied in our experiments, S* is not sufficiently sensitive to these 
parameters to cause concern in our crude estimation. Applying a Mangler transforma- 
tion to this result to account for the axial symmetry (see, for example, Walz 1966, 
p. 174), yields 

6" 2 
L - 4 3  JRe' 
-N- 

I n  ( 7 )  and (8) L is the length of the generator of the cone, 6" is the displacement thick- 
ness a t  the trailing edge of the cone, and Re is the Reynolds number outside the 
boundary layer, based on L. 

I n  both of the dissociating gases the temperature after a frozen shock of 60' incidence 
to the free stream is approximately 10000K. Since the wall temperature remains a t  
300K during the short test time, the effect of heat transfer to the wall must be con- 
sidered. This may be estimated by assuming the Prandtl and Lewis numbers to be 
unity and using equation (8.3.3) of Hayes & Probstein (1959) in a linear velocity 
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Nitrogen Carbon dioxide Argon 

L =  l c m  5 000 5 000 1500 
L = lOcm 50 000 50 000 15000 

L = l c m  0.005 0.005 0.007 
L = 10cm 0.01 0.01 0.02 

Reynolds number 

Displacement thickness (cm) 

Relaxation length I (cm) 1.2 0.4 a3 

TABLE 2.  Range of boundary-layer displacement thickness at incipient detachment. 

profile. In  this manner, the effect of wall cooling may be shown to reduce S* by a factor 
of 4. The viscosity may he estimated from data given by Dorrance (1962) to be 
( 3  f 1 )  x 10-3g cm-ls-l for nitrogen a t  10000 K and is assumed to be the same for the 
carbon-dioxide flow, which consists in a large part of CO. The resulting values of the 
Reynolds number and estimates of displacement thickness are given in table 2 .  Clearly, 
S* is near or below the resolution limit. This is in agreement with observation (see, for 
example, figure 12d, near trailing edge). 

In  the present experiments the parameter l / d  was varied both by changing 1 and by 
varying the model size d .  The dissociation rate is very sensitive to temperature and 
varies approximately linearly with the density. For a given set of free-stream condi- 
tions, the relaxation length is therefore sensitive to the shock angle. Since the range of 
shock angles of interest to the detachment problem lies in a narrow range around 
incipient detachment, I may be considered to be constant for each gas. Calculated 
values of the relaxation length after a normal shock (to where the density change due 
to relaxation reaches 95 yo of its maximum value) are given in the last row of table 2. 
However, changing 1 by changing the gas changes the functional form of equation ( 6 )  
(for example, it changes the values of ScaI( I )  and Sc,(3)) so that this does not help in 
examining the detailed behaviour predicted by figure 9 .  It is more profitable to  
change d .  For this purpose a large number of cones was made with a range of semi- 
angles S, and with d = 7.5, 3 and 1 cm. A few very large (d = 15 cm) and very small 
(d = 0.5 cm) cones were also made, but the limits of the facility size and resolution in 
interferometry caused results obtained with th.ose to be only of restricted value. 

4. Results and discussion 
The results of the argon experiments are presented in figure 10. These were all 

obtained on cones with d = 3 cm. The error bars on the measurement of A represent 
approximately 0. i 5  mm. Though the photographs permit considerably better resolu- 
tion, the relatively low density of the argon flow causes the shock in the interferograms 
to  be poorly defined. The behaviour of A l d  with Sc can be seen to follow approximately 
that observed by Ward & Pugh (1968)) though there appears to be a slight departure 
from linearity of the curve in our experiment. As can be seen, the results also agree 
with the calculated value of S,,,, within the error, though they indicate a slightly 
higher value. 

The results obtained in nitrogen with cones of d = I?  3 and 7.5cm are shown in 
figure 11. It is clear that the error bars on A / d ,  particularly for the small cones, is too 
large to be able to separate the curve obtained for d = 7.5 cm from that for d = 1 cm 
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6 CM 6c (deg.1 

FIGURE 10. Results of perfect-gas argon experiments, d = 3 cm. 
The arrow shows the calculated value of SCM. 

6cM (3)  ~ C M  (1) 6c (deg.1 

FIGURE 11.  Results of dissociating nitrogen experiments. 0, d = 1 cm; A,  d = 3 cm; 0, 
d = 7 .5  cm. The effect of model size is barely significant in view of the measurement errors, 
Arrows show calculated angles. 

with any significance above 6, = 6 4 O ,  and it is barely possible to detect the trend 
predicted by figure 9 below this angle. The calculated values of cYcAr(l) and 6,,,(3) are 
again shown by arrows. 
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0.06 ' 1 I 

6CM (3) 6~ (deg.) 

FIGURE 13. Results of dissociating carbon dioxide flows. 
0, d = 1 em; 0, d = 7.5 em. 

The higher density and refractive index of the gas in the carbon dioxide flow makes 
it possible to resolve the shock much more sharply. With care in the adjustment of the 
interferometer it was even possible to see the shock on cones with d = 0.5 cm provided 
that it was detached. Examples of the interferograms taken in carbon dioxide flows 
are shown in figure 12 (plate I). 

The results obtained with carbon dioxide are shown in figure 13, in which the points 
for d = 1 cm and d = 7.5 cm only have been selected. Here, the separation of the two 
curves is clearly in the same direction as that in figure 9 and the qualitative behaviour 
is generally as predicted. The points ford = 3 cm fall between the two curves. It can be 
seen from figure 13 that  the position of the two curves in relation to the two arrows 
(6cnf(l) and &c&1(3)) is closer to the equilibrium side than in the case of nitrogen (see 
figure 11) .  This is as it should be in view of the difference in the relaxation lengths. For 
example, the case d = 3 cm in nitrogen gives the same Z/d as the case d = 1 cm in 
carbon dioxide. This is part of the reason for the small separation of the curves in 
figure 11. 

5. Conclusions 
Experiments to examine shock detachment in relaxing flow with wedge models had 

the unavoidable problem that end 9ffects are difficult to separate from relaxation 
effects. The present experiments were successful in eliminating this difficulty by per- 
forming the experiments with cones. The results clearly show that the effect, observed 
by Hornung & Smith (1979) on wedges, that shock detachment occurs more gradually 
in a relaxing gas than in equilibrium or frozen flow, is also observed in cone flow. 

Considerations of a map of the flow into the speed-deflexion plane again allow the 
effect to be predicted. However, this mapping is considerably more complex in cone 
flow, because the conditions after a conical shock are not uniform even in frozen or 
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equilibrium flow. The speed-defiexion plane map gives a good explanation of the 
qualitative behaviour of the sonic surface in the flow field as the cone semi-angle is 
increased. 

The experiments were performed with sets of cones of various base diameters, thus 
varying the parameter Ild without changing the gas. Though the predicted effect was 
clearly observed in carbon dioxide flows, the limits of resolution of optical inter- 
ferometry caused the results obtained in nitrogen to be barely significant. As a check, 
a perfect-gas argon experiment showed the effect to be absent in frozen flow. 

The facility used in this project received support from the Australian Research 
Grants Committee. 
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